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ABSTRACT

An analysis based on the lifting surface theory has been developed

for evaluation of the vibratory velocity field induced by an operating

propeller in both uniform and nonuniform inflow fields. The analysis

demonstrates that In the case of nonuniform flow the velocity at any field

point Is made up of a large number of combinations of the frequency

constituents of the loading function with those of the space function

(propagation or Influence function). A numerical procedure has been developed

adaptable to a high-speed digital computer (CDC 6600) and the existing pro-

gram, which evaluates the steady and unsteady propeller loadings, the

resulting hydrodynamic forces and moments and the pressure field, has been

•I extended to Include evaluation of the velocity field as well. This program

should thus become a highly versatile and useful tool for the ship researcher

or designer.
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NOMENCLATURE

a Q/U

f(u) function defined in Eq (19)

g1 2(u) functions defined In Eq (18ab)

h(u) function defined In Eq (17)

I M(X) modified Bessel function of first kind of order m and
argument x

iJ(X) Bessel function of order n and argument x

mK (x) modified Bessel function of second kind

K(m) space function

SR(mln) derivatives with respect to x~r,cP, respectively, ofxrcp modified space function (after chordwise integration)

k variable of integration

i i L(p, ) blade loading, lb/ft

integer multiple

m integer

N number of blades

j n blade index

n order of chordwise modes

12 AP(Ep~eo) pressure jump across propeller blade, lb/ft

q order of harmonic of velocity field

Descartes distance

Sr radial ordinate of field point

Sr 0propeller radius

S lifting surface

v
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t time, seconds

U free streamr velocity

u k+aLN , variable rif Integration

xYz Cartesian coordinates of field point

xrcp cylindrical coordinates of field point

8(x) Dirac delta function of x

0° arigular position of point on propeller blade, In propeller
plane, with respect to midchord line

0a angular chordwise location of point on blade

Ob projected propeller semichord length, radians

6n (2n/N)(n-l),n=I,2,...N

A(;)(x) defined in Appendix A

X order of harmonic of loading

ýPp~e° cyli'idrical coordinates of point on propeller blade

p radial ordinate of point on propeller blade

Pf mass density of fluid, slugs/ft3

a angular measure of skewness

'Fvariable of integration

velocity potential

angular position of field point

angular velocity of propeller

I
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INTRODUCTION

SThe characteristics of the oscillatory propeller-induced velocity

and pressure fields constitute the essentials for knowledge of the vibratory

I effects of marine propellers on nearby bodies (hull+appendages). Since

presen' technical developments put great emphasis on increased ship speed

"these vibratory effects have become a very important problem to the naval

architect.

j The basic tools in the endeavor to evaluate the pressure and velocity

field generated by the propeller a lifting surface operating in nonuniform

flow are found in the funcamental Davidson Laboratory studies0"5) where the

loading problem has beer, treated by means of the acceleration potential

method. The resulting integral equation, which relates the unknown loading

distribution to the known velocity distribution normal to the blades, has

been solved by using the mode approach and collocation method In conjunction

with the so-called "generalized lift operator" technique.

The vibratory pressure field has been the subject of a study(6) in

which the analysis and numerical procedure have been developed and adapted

to a high speed digital computer. Wit!, the knowledge thus acquired of the

I vibratory pressure field around an operating propeller, the vibratory

effects on a nearby flat boundary can be determined approximately by inte-

T grating double the free space pressure over the flat surface.

This information, however, will not be sufficient for the study of

vibratory effects in the case of a body of arbitrary shape, if great

accuracy is required. The presence of a nearby body or series of bodies

should be taken into account by studying the mutual interaction between the

marine propeller and the neighboring bodies. The propeller-rudder interac-

tion problem has been the subject of a study(7) which has considered the

rc~'plete interaction for any given geometry of the interacting surfaces when

both are immersed in nonuniform flow. The hull-propeller-rudder interaction

problem car be tackled in similar fashion and thus the long range objective
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of evaluating the propeller-induced vibratory effects on the hull is within

reach.

An essential requirement of such a study is detailed knowledge of

the vibratory velocity field. The present study investigates the propeller-

Induced vibratory velocity theoretically and o,, this basis levelops a

numerical scheme adaptable to a nigh speed computer for evaluating the

velocity field. Thus the existing program, which evaluates the steady and

unsteady propeller loadings, the resulting hydrodynamic forces and moments,

and the pressure field, is extended to Include the velocity field as well.

This program, should become a highly versatile and useful tool for the ship

researcher and ship designer.

The steady and unsteady velocity field around an cperating propeller,

in a uniform flow field only, has been studied by assuming the propeller

el*her as an actuator disk(8)9). i.e. a propeller with Infinitely many

blades, or as a lifting line model(lO). The present study, an application

of the unst ady propeller lifting-surface theory, takes into account the

nonuniformity of the inflow field as well as the exact propeller geometry

with its finite number of blades forming helicoidal surfaces, and hence

is unique.

This research was sponsored by the Office of Naval Research under

Contract NOOOI4-67-A-0202-OO22, NR-162-012.

VELOCITY POTENTIAL DUE TO BLADE LOADING

The velocity potential at a point (xrcp) due to the loading of the

blades of an N-bladed propeller operating in a spatially varying inflow

field is given by

f(xrq,;q) I N CAPW (ý,Pjo)e
STp-fu n=l S X=o

' iXa('r-x)
2e d~d

2
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wi'sre q and X are positive integers defining the desired frequency of

the velocity field and the appropriate frequency of the propeller loading,

respectively, and

x,r,(p = cy!indrical coordinates of point in space referred
to axes with origin at the propeller hub

ýjp,° 0= c'ýlindrical coordinates of loading point on propeller

U = free stream velocity, ft/sec

Pf = fluid density, slugs/ft 3

-0 = angular velocity of the propeller, rad/sec

a = /U, 1/ft

AP(X)(,peo) = propeller loading, or pressure jump across the propellerSblade, lb/ft 2

R = ý.,_ý 2 + 2 -2rp (0' Oo1  -ot + e - a(¶ -x P 1/U2 f

_--= normal derivative on the helicoidal surface at the loading pointI(ýJpY) on the propeller

n N (n-I) n=l,2, .. N

I S = blade surface, ft 2

The normal derivative to the helicoidal surface (specified by 6 = /a)

Is

In -P 2- 2(a 7-i%- / •+a~p P - bo)

By making use of the expansion scheme for the reciprocal of the

Descartes distance R , vfL.:

I I im(e0•t-trn-a (¶-x)") -i
R-=- i e JW I m( Ik I)K m(Iklr)e dk
R qT

(when p < r , otherwise p and r are interchanged in the modified Bessel

functions)
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and the facts that

N -i(X-m)Bn m ,,, I,,. 0, 11, 2,, ...

n-I

and from the time-dependent factor

X - m -q N

it can be shown that the potential function becomes

I(x,r,),;q) AP M P A 0 o)e tK (x,r,p;.,p,Ro;q)dS (2)
S X0=o

where the K-function is given by

K (x,r,q';ý,p,O ;q) -Np e
k¶TPfU1+aP m: -A

x e I a (r2-x) ( a)Le I N % ra I k I p) K ( k r) e ' 'T'g kd kudT

"• p-• 3)

It is seen that theoretically an infinite number of frequency constituents

of the loading function AP) and of the space function Ktm) combine t,)

give the velocity potential at blade frequency and multiples thereof, and

hence the velocity at any field point. (This was observed by Breslin Pod

Tsakonas in Ref. ii.)

The integration over the blade surface can be converted to integra-

tion over its projection in the propeller plane, so that Eq (2) becomes

Ob co NiC 
m

S(x,r,cp;q) = E 0 p(M)(•,p,Io)ei tK() 2 p dodp~~ a'o a ~d
p "b %=O

where eb is the projected semichord at each spanwise location p , in

radians. Since

0= - eb cos9 = at (4)

wnere q is angular posit ion of the midchord line of the projected blade

I4
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from the generator line through the hub, or skewness, and 8 is angular

chordwise location of the loading point,

I(x,r,q,;q) = fo f 0E (p,ot )e K ap sinecd ltdP (5)

I with L(X)(p,eO) = P(h)(ý,P,6). Peb ' lb/ft

On taking the derivatives in (3)

220 im(o-yK'9m = K(m) = +iN Z eIap 
4•TT2p f Ua m=---0

."xeiatN(v x)Jf(ak + 2)Im(k I p)K(Jkkr)el( ')kdkdT (6)

I TThe T-integral of (6) involves

ei x Nk) ie (k+a£N) xSe i(aIN+k) TdT = Tr6(aN+k) 
- " k+a;N

.co ~k+a AN(7

I where 6( ) is the Dirac delta function. On SuOsLituting Eqs (7) and (4)
in (6), it becomes

Ki e im(a-cp)
Kl(m) = + Z e

4TI ~ m•-c

{e AN(ax)e - b '(a IN IP)K (ajiN!r)[-a2N+m/p2]

- f _ I m (Ikjp)K ( I NkIr) (e k+ /p2) ik(x-a/a) e-i(m-k/a) bCcos@i
T-CO k+a.IN -- ee 1k;

(8)

(for p < r , otherwise p and r are interchanged in the modified Bessel
functions.) Here only pf and U are dimensional and xpra and k have
been nondimensionalized with respect to propeller radius r as has p in,

Eq (5).

:1 5
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The loading funLtion L)(pIecv) is approximated in the chordwise
direction by the Birnbaum mode shapes:

LW ~(p,ed) - !L {L(X'l) (P) cot !01+ OE L(XY3f)(p)sin(;-l)e~
2 ;=

The propeller loading distribution at any frequency Is now given in terms of
a spanwise (p) loading distribution which Is available from the existing
program(12•13) and a chordwise (901) distribution of n modes which will
allow the ch)rdwise integration to be performed analytically.

After the chordwise eo-integration, Eq (5) becomes

CO CO
§(xrcp;q) = F -, E L(X"n)(p)eicPtR(mIn)dp (9)

P n=I X=O

where the modified space function is

K(m'nl) rf K'(m).@(n)sinO dGO
0

90) cot

sinn(-l)e , O > I
With X-m=q--N,=O,-+l,±2 , for each I

R(m,;) + MNeim(a"P) {ei N(a.ax)(a- a22N)I (ajtNIp)K (aIlNIr)A() (eb= lp f /TfUa- R. " b

"i O eik(x-a/a) _(m/p +ak) I(!kIP)K(I kjI)

- T k+atN M
"A (;) ( (mk-) 0b) d k (10)

for p < r (for p > r, p and r are interchanged in the modified Bessel
functions). The symbol A(n)(x) is defined in Appendix A.
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I VELOCITY FIELD

The velocities In the x, y and z directions of the Cartesian coordi-

nate system with origin at the propeller hub at a point xrjP due to the

propeller operating in spatially varying inflow will be the derivatives of

the velocity potential § with respect to xy and z, respectively. Since

I z = r coscp

y = r sincp

the derivatives with respect to y and z can be obtained In terms of

derivatives with respect to the cylindrical coordinate% r and c as

y- r s I ( + ( coscp

U U UI
U T cosU p - -- sinr

II in non-dimensional form.

Velocity Components

The derivatives with respect to x, r and cp determine the axial,
I radial and tangential components of the velocity.

Axial component:

o 0,N n
Xu (x,r,cp;q) = p n L' (p)ei ~ta(m"n)dP (11)

U S n1I X=O x

where m=X-IN=X-q , and for each A and q

j R(m, -) eim (arq() a2 N)e i UN (Q-ax)
x4rrpfUaro

T . KM (a LIN Ir)A(R) (Xeb)

""TT-co k(ak+m/p2) ik(x-a/a)
-1 k~aeN m/ ( ijkj p) K11 jkj r)e x

A(_n)((m-k/a)Ob)dk} (12)

for p s r , otherwise p and r are interchanged in the modified Bessel

functions.
7
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Radial component:

r(x, r, T; q) E E L 1(kf)() eictR(m' h)dp (13)

wl're for p < r for each 1Land q

a) Rrn~l + ,Nm( 1) 2-a. _ ("2l -aM (l~
rTt Ifrfuar 0p

+L[1IkI(akj /) m II)[m..(kr)+K.+.i(Ikr)1A r)1%

eI k(x-ar/a) A (.;(rn-k/a) eb) dk} 11a

for p >r Iemcc)Im 2L~-x

b) R(myfl)= + 2~ I { C- +a11N 1,(2 -a PAN) eKiN(craILNP

r 4~~TTpf u2 ar0 2 2K (aIA1p

- 00 k ak+ rn/ 2 )K

and for p = r it can be shown that

c) R (p=r) = [Eq 14(a) + Eq 14(b)] evaluated at p~r (14c)

Tangential component:

(%(x), CP; q) I _ O (x)iCO(m )(5
rF. U %4 3 L (p)eitRm-d (5

r pn=1 X=O 1P

where r Is nondimensional with respect to ro propeller radius and,

for p•s r and each ILor q
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I

+ Nme im(a-cp) ,.m -r) . I )

1n" ' 2 t(( "a2tN)e itN(a'ax)l(ll)•(!N(Ob

4ITrpfu2 a r 0 P 2 m(a JI Ip)Km(afI j r)tA (kob)

I W a (ak+m/p 2 ) im(k QkIp(1 Ir)elk(x-c/a)
r ., k+alN 

I

I A(n)((m-k/a)eb)dk} (16)
For p > r. p and r are Interchanged In the modified Bessel functions.

The integral terms of the modified kernels (Eqs 12, 14, 16) all have
Cauchy-type singularities at variable points depending or, values ofI0= !3) ..... Use of a transformation u=k+atN fixes the s!ngular pointat the origin, thus avoiding the cJnplications arising in the numerical
integration from singular points at varying values of k

Influence Functions

Letting u-k+atN . Eq (12) becomes

(m., n)= . Ne i (%a-m(P-aLNx)

xTrp U 2ar°

SaIN (a 21N-m/p2 ) Im (a I IN Ip) K (al I N jr) A (;) (%aeb

= 0 h_•u)-h(-u,--d--uj fo r p ý' r (7
Su(x-a/a) 

(17)

where h(u)-(u-atN)(au-a •N+m/p2)I m ('u-aNjp)Km( u-aN r)e

AI A()((Xu/a)eb)

I The integrand at u=O is evaluated in Appendix B as
a) when q=1=0 , m= =O

lir =017 L-9
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b) When q-10-O, m-XOO

1,• [0u) -/)(p/r) mA ()X for P < r
u -,OL -- (I/P)(r/p) m( (x9b) for p 2 r

c) When q-,tNO

Jim u-h- 'h(u) -2 {Im(a I•Nlp)Km(alN jr)}u-.O L U m

[[2a2 N-m/p 2- I (x-a/a) aAN (a 2 tN-m/p 2 ) ]A(;) eb)

-i ebLN(a 2 ,N-m/p 2 )A(n) (Xeb)]

S; {~~pKm(al/,N r)[Im_,(a l•N lp+lm+I(a l•NIp)]-rim(al.NM p)

[%K_ I(aI11NIr)+Km I(aJA IN r)]} aiN(a2LN-m/o2)^A(;)(Xe b) , for p-5r

Where the upper sign (-) is used when t > 0 and the ,ower sign (+) when
A < 0 . When p > r , p and r are interchanged iir the factors in braces
(involving mod;fied Besse] functions and their derivati,/es).

The clostd term of (17) can be shown to be equal to zero when q-1=O.

Equation (14a) for p < r becomes with u='k+atN

p r) -Nei (X•-mcp-aiNx)R~m'fl (p < r
r 4Tp f u2a 0

* {" 'ajtN I(a2 AN'm/P 2) Im(a jNI op)[Kml (aItNI r)+Km! (al IN Ir)] A (;)Xeb)

+ 1 o u du (18a)

where gl(u)=l u-aANI(au-a 2 t.N+m/p 2) Im( u-aAN p)LKrnv( U-a'N Ir)+Km+l(I u-aN 1r)]

e eiU(x-a•/a) A(-n)((X-u/a)o )b)

It can be easily shown that when q=i=O the closed term of (18a) becomes

10
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where mmmX since q0O.

The Integrand at u=O is evaluated in Appendix C as

a) When q-'t-O., m=X=O

I~i (u)g ( 4) Qafr)A(ý) (0)

b) When qkt=O, mX#O

I+(im/p 2) (0la) A (;) (;keb)

c) When q=LN#0

l im [91 (u) -9 (U)}I ±2{I(aI.LNfp)[K _(ajANIr)+K,,1 (aMI~r]

1J2a 2tN-m/p2-i (x-o/a) (atN) (a 2 N-m/p 2ý A~n(Xeb)

Ii +AN(a 2 tNm/p)2) A Rl (Xe)

-rI m(aIANIp)1KM2 (a IAN Ir) +2K )(a IAN Ir) +KM2 (a IAN I r)]

where the upper sign (+) Is used when A > 0 and the lower sign(-

Iwhen A< 0.
Equatibn 014b) for p > -becomes with u~k+atU4
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(r (> r)= L4TpIJa

r 4 r r p f U 2 o

{4(i/2)a 10 1 (a .tN-m/p ) Km(at IM1p)[Im...I (a JIN Ir) +1 M+ (a~ ZN r)jAR~ (Xob)

+ (I /2r) S g2 u ._(u du} (18b)

where g(u)= - Iu-aLN I(au-a 2 £tN/p2)K ( ju-atN Ip)[I (f u-atN Jr)+Il ~,aN )

In this case when q=1=0 the closed term is

-(1/2) (r/p)m(m/rp 2)A(l) (xeb)

The integriand at u=O is evaluated in Appendix C as

a) when q=1O , m=XX=O

limi g 9(u)-92 1(-u) 1 =

b) when q=1A-O , %0

lrn [ I =(-2/r)(r/p)m{fa+ (m/p5(x-o/a) ]A b)

+ (irn/p 2) (/a)Afn) (Nob)

c) when qL#OO

I irn92( -92(u)] ; 2K (al AN p[I (a IMNjr)+I 1 (a JAN Ir)]

f~2A-mp2i (x-a/ý) aAN (a2 AN-m/p 2) nAf) (%e,)

2 2 (n)

12
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+(j)(2 2 R~
+(aN)a N-rn/p )A (%9b

I~ {PEK aILNIp)+Kn+I~a1tj)lm4IPI a IZNlr)+1,,*i(alt~lr)1

-rK (a VN IP)Lm2( JL r)+21m(a JAN I r)+Il. 2 IL-Njr)}

where the upper sign (-) is used when t > 0 and the lower sign()

rwhn, <T 0 .
With u-k+atN , Eq (14c) for p-r becomes

R (m';(-r q(1a Eq (18b)l evaluated at p-r (18c)
r I(hr [EI1a

I On substituting u-k+atN Eq (16) becomes

I k(m,fl Ne I (a-m(P-alfx)
K; 

4~LTTP fU 2ar r

f m(a2 M-m/P2) I .(a~ IM p) Km(a JAN Ir) AR (X8 b)

+ (I /f,) SWm Ff(u)-f(-U) d1.(9
L u ]dul(19

SIwhere f(z;%(au-a 2 LN+m/p 2)1 I( u-alNlp)K (tu-a.ANlr)e iu~x-a/a) A (f) (Q-u/a)eb

I, Iit can be shown that when qmA--V the closed term of (19) becomes

SI(-m/2p)(p/r)MA(n)(%.Ob) for p:

I(-m/2p5((/p)mA(fl)(Xe) o PZ

The Integrand of (19) Is evaluated for u-0 in Appendix D as

a) when q-1L-O , X0

13
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b) when q-==O , m-n-X#O

Si f (u) -f(-u) ] = (i x-•am/p2j(f) (;eb)+( eb/a)(/2)A}•) (E~b)}

(p/r)m for p r r'

L(r/p)m for p r f

c) when q=1N10 , m=.-IN

1imm [f(u)-f(-u)] = +(n2a. N/2)} 2 n)(Xeb)
u .,0 u

-(ibk/a)(a2tN-m/p2)Aln) (xeb)}Im(a IJN IpK (a JAN jr)

+m (a2LN-m/2). (2) (X.b)

S{PKm (aI IN Ir)[I m_ (a IN Ip)+Im+& (a" INIP)]

-rl (aIlN )[KmI(aIlNjr)+KI(a INjr)JI

for p < r , otherwise p and r are interchanged in the product of the

modified Bessel functions and its derivative (the factor in braces in the

second term). Here the upper sign (+) is used when A > 0 and the lower

sign (-) when Z < 0

When m=O, I.e. %=IN what. ,er the value of A

R(m',f) = 0

STEADY-STATE AND BLADE-FREQUENCY VELOCITY FIELD
"FOR NONUNIFORM AND UNIFORM INFLOWS

It is easily seen from Eq (9) that in the steady-state, nonuniform

inflow case, when q=t=O , the velocity potential is given by

I(x,r,CP;O) = R.P.S L'(n ) R("'fn)do (20)
p n1 X=o

14
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whereas in the unsteady blade-frequency case where 1i91- 1 the velocity

potential becomes

4(x,.r,'p;N) R.P. le't tF IL
p ;=I X=O

+ conj.[L("'n)() R(I'""'n)fdp}

where in the first term on the R.H., K(mf) is evaluated at mnX-N,Z-l

and in the second term at m=X+N,•-I . Therefore the blade-frequency

velocity potential is

I(x,r,ID;N) = n' -- {L(;rn)(p) R(XY"N')+cnj. L( 'n)(P)R(x+N'n)IFP
p n=l X0OIl

(21)

In t' uniform inflow case, on the other hand, with X=O the corres-

ii ponding values are:

= L(O'n) (p) R(O-'n)dp (22)j p n=l

a n d C (- N ,n ) +(

S(x,r,y;N)=f L(°'•)(p[ + con.R(N'FL ()
p n=l

= =2 " E !L(O1;)(p) R(-N'n) d,,: (23)

P !

The velocity field is given by the derivatives with respect to x.y1z

of these velocity potentials. In non-dimensional form in the steady-state,

"nonuniform inflow case, q=#=O , m=X

v(O) x(0)(,n
U x =n= l X= E F, L (P) F,(x'')dp (24a)

; (0)
Vr {(0) (,n)=-r U r " L(% f)(p) K(X'Y)dp (24b)

Up n=I XO r
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V. C -•O . L(X., ;) Ký' dp (24c)

U rr r U - •
0 pn=lIX=O

where R(,) (m,nl) and -(m,) are given by Eqs (17), (18a, b or c)
x r a

and (19), respectively. Note that the argument of the potential refers to

the value of the frequency.

In the unsteady, blade-frequency case q=N, Ii1 =1, m=X-LN

V (N) 4x(N)- ,xN = { -x' X. fL (X-n) (p)K(:X-N.;)

U U Xnl=

+conj. .L (X'n) (OR (X+N' n) •dp (25a)

V (N) •r(N)= ~ ~ Z~2=L"' (p) R(-N,nl)

p n=1 ;•=O r

+conj. [L (X"'n) (p)R(X+N' n) dp (25b)

VU rb(N) - (x,)R(X-N~n)U r- r b ' •
0 ;, =I X=0"

+conj .[L (X.•) (p)RK(X+N'•) •dp (250)

NUMERICAL RESULTS

A numerical procedure for the evaluation of the velocity field

induced by a propeller operating in spatially uniform or nonuniform inflow

has been developed and incorporated in the existing program which computes

the ioading on the interacting blades, the resulting steady and unsteady

hydrodynamic forces and moments and the pressure field.

The enlarged program has been used to calculate the steady-state and

blade-frequency theoretical velocities in the x, y, and z directions in the

neighborhood of the NSRDC 3-blade, 12-inch diameter, marine propeller

16
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No. 4111 of blade area ratio BAR - 0.6. which Ead been treated In earlier

studies. The blade loading distributions and resulting forces and moments

had been presented In Refs 3, 5 and 12, the blade-frequency pressures in

the vicinity of the propeller in Ref 6.

In Ref 6 the th•oretical pressure calculations were shown to be In

satisfactory agreement with the available experimental results(1 4 ) for both

uniform flow and the nonuniform flow generated by a wake screen. The

present computations of the velocity field have been performed for the same

conditions, viz.,

Advance ratio, J 0.833 (Design)

"lp Clearance 5% of diameter (r = 1.1)

fngle cp (clockwise from 0
12 M position looking aft)

over a range of axial distance x from the propeller plane, from -0.3 of

radius (upstream) t. 40.3 radius (downstream). The harmonic analysis of the

screen wake survey was that supplied by NSRDC.

The results of the calculations are shown in the figures. Figures I

and 2 present the real and imaginary parts of the unsteady, blade-frequency

x, y and z components of the velocity, in nonuniform and uniform flow,

respectively. Figures 3 and 4 deplct the steady-state components.

Figures 5-7 are ccmparisons of the unsteaay, blade-frequency veloci-

ties for uniform and nonuniform Now conditions. These figures show that

nonuniformity in the flow reduces the amplitudes of the velocities in the

neighborhood of the propeller. This was to be expected from the comparisors

of the experimental blade-rate pressures for the same tip clearance, angle Y

and J in nonuniform and uniform flow given in r~gs 33-35 of Ref 14, where

It is seen that nonuniformity in the flow increases the pressure magnitudes.

The pressure can be computed from the velocity components by using

Bernoulli's linearized equation for free-space pressure

*It is to be noted that the peak in blade-rate pressure in uniform flow in

Fig 34 of Ref 14 is in error, as comparison with Figs 15 and 16 of that
reference will show.

:7
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P(x,rq;t) --pf + U' = "PfIt a x"

= -pf(Orr0 V + +V )

(The pressure on a flat plate is twice the free-space value.) Calculations

of the blade-frequency presture in a uniform flow field for the small axial

range -0.3 < x < 0.3, using the velocity components shown in Figure 2, check

quite well with the corresponding pressures on a flat p!ate arising from

blade loading in Figure 13 of Reference 6, which compared well with experi-

mentally obtained values.

CONCLUSION

The vibratory velocity field induced by an operating propeller in

uniform and nonuniform inflow fields has been determined on the basis of

lifting surface theory, and the developed numerical prouedure has bcen

incorporated in the existing program, adapted to the CDC 6600 high-speed

digital computer, which evaluates the steady and unsteady propeller load-

ings, the resulting hydrodynamic forces and moments, and the pressure field.

The analysis demonstrates that, in contrast to the case of uniform

flow, in nonuniform flow the velocity at any field point is made up of a

large number of combinations of the frequency constituents of the loadini

function with those of the space function.

The results of calculations for a 3-blade propeller in uniform flow

and in a 3-cycle screen-generated v.ke show that the effect of the non-

uniformity in the flow is to reduce the amplitudes of tha velocities in the

neighborhood of the propeller. Although no experimental velocity data are

available for this case, this effect of Lhe nonuniformity is confirmed by

the experimental data on pressure fields induced by the same propeller

under the same conditions which show that the nonuniformity increases the

pressure amplitudes, Firthermore, pressures computed from the theoretical

velocity c,,iponerits in a uniform flow field show good agreement with both

earlier ca'culations of the pressures due to blade loading and experimental

pressure measurements.

18
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I.! The particular case of a propeller In a screen wake was selecteo for

purposes of comparison and because, the wake being pure third harmonic and
strong, wake measurements were accurate. Unfortunately these walie charac-

terlstics are not those of a typical ship.

. It is to be noted, furthermore, that the present report has con-
sidered trly the effect of blade loading on the velocity field. Blade

thickness Is also Important. An expression for the velocity field due to
this effect is been developed analytically, and will be Incorporated in

the present p.'ogram and applied to the case of a propeller In an actual

ship wake, in an extiension of this Invest!gation.

19
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APPENDIX A

I A(;)(x) and A(;)(x

I|I ^ x) - 1T r 6) exp(-ixcose0 )sin.e d9c (A-1)
0

I where e(i) = cot (ea/2)

9(n)= sin(n-|)BO, , n > I

Then

I A(1M(x) - Jo(X) -iJl(x)

I (;) W - J-2(x + J;(x) n > 1

i where Jn(x) is the Bessel function of the first kind of order n and
argument x

I A~(;) W $ 01ST (n) exp(-ixcose )cose in@ deO (A-2)

(1)W = = [Jo2 ) - J (x)]- ,J (x)

I Al)(nx) 4 [J_3 (x) - J-+ 1 (x)] ,n >

It is to be noted that

=. - i, e(n) exp(-ixccse•)cose sin@ de6x rrof Oa

-iA A-(x)

II

A-)
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I APPENDIX 6

IEvaluation of the Integrand of at u -0

IT". integrand of R~ x(.n)Is

rh(u) - h(1j'

where h(u) - (u - aiN)(au - -2 IN + ) Lw(Iu-a~tN~p)K (Iu-aiN ir)]
p 

nI * e~iu(x- ~ ~(x* b)

and q -AN. AL -0, :El, +.2,...

Ih(u) -u(au+ia- ) 1iIM(up)Km(ur)I1 eIU(X- Sa A~~(( *)b)
p

Ih(-U) - u(-au~i-2) DmIup)Kmurj e' -iax -U; O~( )b)
p

I Then

h_(u) - h(-u) - Imu)mr1 aeiJ(x-)A~((-)b

-eiU(x- 2 A (n) M(+ U)Ob)]

+) Za a )((+!L b
p

a) when m 0 '

Ir imh(u)-h (u),] p ~b frp~ (B-la)
U-0 ( u1 (4) A(n)(Xo) for p > r
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b) when m 0

li [h(u) h h(-U)1 0 -b

II. q - IHO

rh(u) -h (-u) ~ 1 r 2
I Zm Lu I m j(u-ajN) (au-a IN -2) [i(aNuK..(N-)r

eiu(x- A -us) 0 b

-(-u-atN) (-au -a 2 044) [im((atN+u)p)K.((ami.Nu)r)]

*eU( a) A(;(x UDb for p <r

By LaHospitalls rule

urn jFh(u)-h(-u)] . BrEh(u)-.h(...)] in

r 2 m 22
+i La-a- tN+a -7 + au -a LN +Ix Za)(-a)(-uat)u-a - N AN+ TO
U-0p p

It((a.tNa-u)p)K ((aiN'ju)r) l u(x aA(x )

2 rn 2ux 2)Q)Nu)K(~Nu
+ (u-a AN+ (u au LN -7) a AN (a(X--ua)(-I(au- IN+

p

I~ ~ (aNupK(aNur) e(a-u )K(aN-u)r)

+ (~u-ajN) (au-a2 AN+ m -2 ) - aa A( ((x- 2a)QFb ImA((atN-u) p)Kf% ((atN-u)r)
p

- r 'I ((aiN-u)p)K' ((atN-u)r)]

B -2
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2 ni IA U((x-O,
+ (u-atN) (au-a IN+ IT. [i (atN-u)p)K aIN -u) r)j eQ ab

-(-u-aAJ4)(-au-at4 2 [; ((aeN+u)p)Km((a.tN+u)r)] 6 ux.8 ")p ( ab

w h e r e M R ( L N + I 'b

- I bA , X

I ~ ~ ~ ý UA(~~)b =-0 a -A~(eb)

and A(;o) Is defined In Appendix A.

Then, whatever m,

I [r.h(u) - h(-u)1  2 [I (aI2NIp) K (alfilr)1

I {[+~~a~tl-T n- xa) (amN) (a2 N A~) A~(kab)
p p

iqb2N(a2 IN- + n

I -~~~2(aAN)(a IN- -?-A'~ ,9

1'where(B2
f m Lm-I~-lj(B-7a)

1~~~~ 2AaL~r LKm~i(a1Nlr)+Km-,li(al.1Nlr1

Here p < r otherwise p and r are interchanged in the modified Bessel

functions and the last term in brackets of (B-2).

B3-3
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III. q = IN < 0, whatever m,

Irn [h(u)-h(-u)1 Im 1r 4f(u-atN)(au-afl 2,,m,[ (~a.N))r((~lN~l

p

.0iu(x-) A (;) ((x- *)eb

,,(~)-(u] -u- 2~a ANp)K(-au- I.N+ ) Ir)] ~ lJIpK(-~a1I )

p

*l ~)-(u [PIm(al Mlp)Km(alt~N~r)+r~INPK~aA~) 8

fun[i2a an th las term inm brakt n(-)

I

B-4
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..'PENDIX C

Evaluation of the Integrand of Rr at u-0

A. For the case,- p < r

The Integrand of R~myfl)( (<r0 is

[91(u) -g~ (-u)(c)

where g;(u) - Iu-aZNI %-a~ N+m/p2){I( Iu-.aAN k)}

and q-M L- , : .t,1 172....

I g-JUO ,~

and g, (-u)=u(-au+nVP2 ) {I(up)[K._(ur)+Kn, (ur)]Je-u(x-a'a)A(l) (Q(.+u/a)eb)

(B-2)
Then

I 9 (uj)-g1 (-u) uxa)[Iv]-u{ I m(up) [KM_ (ur)+Kmn I(ur)]}{a[e ux~aA (f((.u/a)e b)

+ m + eiux-/)A X/a9

I-ieu(x/ar/a) 
A1 R ((X+u /a) 9b)]
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a) when m'=jOO

Iu-.0 gl U) LJ 2 (~)

+ m!:u [imP2) i 2 {ebX/ )A()(Xuae)e)Aj~(.uae
u --00

But

Ji i(x--a/a),(;) (Xuaeb-e' lu(x-co/a)iA (;;) (Xu eb

u -~0 ]
R xaa[ (X0 ]+ [6A (;) .,-u/a) eb) 6A ((i.+u/a)e )

2i(x-a/a)A(n)(Xeb) + 2i(9b/a)14n) (xeb

sic aA (A;)((%- u/a) e b) I =-M;((X+u/a) eb) 1 (-0 16) A) (Xe)

w ,t An(x) as defined In Appendix A

Therefore the integrand at u=0 is

f _/a-m [ {[Om/p3(x-aa}~ (e)(im/P2) I(n ) 1 } (C-la)

b) when m-%=O the Integrand at u=0 Is easily seen to be

r

11 q=1N >0

9r [ 1 (U) 9 1 (-U)] r £aNu)ua2Nr/2f(

[Kj0(aLN-4uU~aNu)r)+K2 fIm( aZNu

IKM_((aN-ur)+m+i ((aZN-u)r)jle iu(x-/a) A(l) ((X\-u/a)eb)

C-2
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-* 2 2.
- (aAN+u) (-au-a oNfinp )f .. ((atN+u)p)

[K,1_ 1((a.N+u) r) +Km+ 1( (aAN+u) r)}' u (x-a/a) A~ R((X+u /a) b

By 0Hsitlsrl

0u

Then, whatever m,

r{2 2  2_ 2 2]()X[2 N-mfp -i(x-of/a)(aAN)(a MN-m/p b

-'p AbN(a AN-m/p )A, (Xe G

+2(aAN) (a2 ANmp /2)A(l) (Xob

+r I m (alI N 1p)rKC 1ý_I(a INI r) +K4,(a I N Ir)} (C-2)

Lier ______p) [I

wee m 2 _,I (aI.ANIp + Im+ (aIANIp)l (C-2a)

K 1 (a JAN I r) +Ký+ (a I AN I r) = :L rK (a IAN r)+2Kma OINJO )+Km+ 2(aI AN r))

III q=AN < 0 ywhatever rn

u u- 0 U

2I 2



-(.u-atMN) (-au-a 2 ANm/p 2) {im( (_u+AINtI )p{[Km , ((-u+alfNl )r)+K,,~. ((-u+aij"N1'

e -lu~x-/a) A (; ((X~/eb)l

{[2a 2 N-m/p 2 _I(x-C/a) (aAN) ( 2 N-fp 2) MAR(e

-18bLN(a N-M/P 2)A(;)(%'b

+42(aAN)( ~2AN-m/p2)A(fl)( (.b){ptl(aI V41p)liKm_(a lHNIr)+Km+i(alAI Jr)]

+rlm(aIN p) K'_,(aILNjr)+Ký+,(aIjt4Ir)I1 (C-3)

B.. For the casij: p > r

The integrand of f(w"fl)(p > r) Is

[92(u) -92(-u)] C4

where g,(u) Is given In Eq (18b)

R iaeu(x-a/a)A(n-)((.u/)O)e 
(XfA)(xI/a9j

+ ~ [l~x /)()((-u/a)e b)..e-1u (x-Cr/a) A(") (Vd-u/a) 9b)}

p u

a) when mv-XOO it can be shown that

,,2g) 9 (-u), 2 ( X0

li u (r/p)m(2/r){(t 1i~p )(x-cr/a) ]A (Xb)

C-4
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b) when ni-?-O

I l~~m[92(U) -g (-U) (-b

u -.0LO

I I qI N
-g](a)Ngu)(-u)a N+m/p )K ((atN-u)p'

U4011l ((a]N-uim I j'lN-u(atNu..a2 ~ -c/)A; 2(-/~,

I +(atN4+u)(-au-a 2 tN+m/p 2)K ((atN+u)p)

I [Ij~m_((aLtN+u)+Ij+((atN+u)r)]e Iu(x-n/a)P()(Q./ae}

-~2KM(6LNp)[ Ij_(afNr)+Inmj (atNrI

{f2a2 N-/p 2 _i (x/a)N(a2 N-/p 2)]A) (Xeb)

-e eb N(a 2 N-n/p2 )A1 )(X.Ob)

-2atN(a2 tN-m/p2)A(l) (X.e) {K'(atNp)[Im 1 (atNr)+Im1 (atNr)]

+rKm(atNp)LI'i-(atNr)+I + (atNr))J (C-4c)

where~~ KaIp ~ K (aiNp)+K, 1+(atNp)

and
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III q-LN <-O

*[lm_1((u+aIlIlN)r)+I. 1 ((u+aIlIN)r)]

+(-u-atN)(a- 2 tN+t/p 2 )Kn( (-u+a IltlN)p) e- U(x-a/a) A(l) (Q.+u/a) b)

-['rn-i((-u+ajt JN)r +m ((-u+a llN) r)}

-2Km(a IlNIp)[I m..i(a ItI r)+Im~l(al IN r)]I

ff2a 2 IN-rn/p2 _ I(x-ay/a) atN(a 2 N-m/p 2) jA(;) (%ob)

-Ie ON(a 2tN-m/p2)A (;) }

-2A~ Nmp2) (Xeb){pK,,'(alI Nip)[Im_ (a liNI r)+Im+,1 (aj tNtr)J

+rK m(aIlNIp)[Im'-(aINIr)+I'1_(aItNIr)]} (C-4d)
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L I APPENDIX I)

Evaluation of the Integrand of cg at u 0

The Integrand of R m;I

where~ f(u mu) f(-U)I1aA ((D-1*)~

1)( 2 + 1.IupKxrei(

whr f(.u) -(a-a IN+ -m)Im(upKura~i)eI(X atre Za ()(

p

g Then

1rn m[f(u)-f(-2)1 -i mr I ~ (up)K (ur)'aurei1U(x- 2a.)Iu-#0 u u--.0 U m L IN)(X )o

+..[IU(Xa U)Q )Ox

=~ -M IaIu)~[eu I(x -!a) A (;U) ab)I~p 
-iu(x- ~)af)(X

lim up)K(upKur)[e1u(x -LA()(%x- !aLeb)~j~ (

IO
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a) when m - X '0 0

I I, "( f (U)-f(-U)] a(f)m A;(X0b)

2 i~u(x- a)~)(.. Ab)oe:hX+

p

M2 am [I( A(;)

+ mU *[(~ .A~(eb) + I (x- )a~" (5~)(d

+m2 1 -a L n) ((X - -)o9b) ),A R(f;a)) bL
p

(L~ {Ru~.. 4 A~(e) + I Lb m 1 t, (b) (D-1 a)

b) when m - -0, the Integrand at u -0 Is

JIm m~f(u)-f(-u)) - 0 (D-lb)u-40 u

In fact, the entire Integral Is zero.

2) q - AN > 0

JIm n~f(u)-f(.-U)] JI M ~ 2 g m

p

Iu(x-a) A(;) U

(-au2 AN ) I ((atN~u)p)K (a 0N u) r)

e-;u(x- Z a~ (+ )b)}

By L'Hospital's rule, the integrand at u -0 Is

D -2
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1 ~ *u~x-~)u~[.~I(x 2)(aI..a ,IW .?11I((atN-u)p)K.,((aAN-U)r)
if4 pI ~ ~ ~ ~ r (aIa ((A r-rI((0u))K(aM-u) r)}

J+(au-a AN+ p!~)I(( Nu)p)Km((aAN-u)r) I.(tNupK'(A
p

+ - aux- .f{aW;x i)l(-auaAN-u p )I((atNu)r)K-(Ba$4.br

II p

a+ -- (-JL (-au-a2  IN+4 .E)[)~ (a((au) p)Km((,t~.)r l ( (aO4+u) r)K((aNurj

pp

+(-au-a 04+ *!)[.)I((aIN~u)p)Km.((aLN+u)r) +Alm((aX+ p)'(tNur

p

+ (-au- N+ .!PF)I ((aIAN~p)K (aGI.N u)rl+~)xe~ D

p

where

P). 1 ri

KI(aIlNIr) - -. . [Kma.Nr (D-2a)

When m - 0 the Integrand is zero.

3) q - AN < 0

1 rnO nf (U) - f (-u))

D-3
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I Im m 1 (au-a 2 tN + yI ( (u -a IN)p) K,((u -atN)r) e 1 2)( A() v a-)b
,ý~2. f(n)Y),,a

- (-au-a 2 N eU.UaNp) (uaNre x-g- ()(+4

p

it can be easily shown that

urn rn[f(u) - f(-u)J
U-0 u

a) (a2j m ( b
p

+ (-a 2tN 41)A(n)(Xq ) L'(altNIp)c(aiI.NIr)+rl (altNIp)Km(altNIr)1

p

+(-a 04 -2p) IaL p)(alLNIr)[i L +A~(x) (D-3
p

When m -0 the Integrand is zero.


